Master 1°C/SMBus Engine

Page 10f 20 3/19/2004 2:04 PM v1.0.0

1.0

2.0

INTRODUCTION

The Master I°C/SMBus Engine (MISE) is a serial to 12C/SMBus bridge utility that allows users to quickly and easily communicate with 1°C and/or SMBus
devices via any serial port that handles asynchronous serial communications at 115,200 bps with a 8N1 data format (8 data bits, no parity, 1 stop bit).
MISE supports ASCII-based human interactive commands in addition to a separate binary command set that allows users to build I*C/SMBus Personal
Computer (PC) applications with their favorite high-level language such as C/C++, Visual Basic, etc. Since the MISE is hosted by a Microchip
PIC16F877 or PIC16F877A microcontroller that has an on-board I°C/SMBus engine, the user need not get bogged down with the actual implementation
of the I’C/SMBus low-level functions. The MISE can be configured to use different SCL clock frequencies, and the bus type (IZC or SMBus) as well as
the slew rate control can be changed and are sticky settings so that they will be retained upon subsequent power-ups.

If you ever wanted to have an I’C/SMBus port on your PC then the Master I°C/SMBus Engine is for you!

SYSTEM BLOCK DIAGRAM

PERSONAL COMPUTER
or
CYBIKO

4

MAX232
(or equivalent)

A

Master 12C/SMBus Engine (MISE)
(PIC16F877 / PIC16F877A)

A
18.432 MHz crystal 12C DEVICE

NOTE: Don't forget the details: crystal load capacitors, decoupling capacitors across the power supply pins, and pull-up resistors on the I’C bus.

The PIC16F877/PIC16F877A microcontroller must be supplied with an 18.432 MHz parallel-cut crystal and appropriate loading capacitors. Consult
crystal manufacturer’s data sheet for capacitor values, but 33 pF should be a good starting point.

The I°C must have appropriate pull-up resistors on the SDA and SCL lines. Consult the latest Philips I1°C Bus Specification for detailed information
regarding pull-up resistors, but 3.0 K ohm resistors would be a good starting point.

A MAX232 or equivalent TTL-to-RS-232 level translator must be used if the asynchronous serial port implements the RS-232 electrical specification.
Don'’t forget to connect the serial port's ground to the Master I°C/SMBus Engine ground!

Page 10f 20 3/19/2004 2:04 PM v1.0.0

4.0

PIC16F877/PIC16F877A PIN USEAGE

From a hardware perspective, the Master 1°C/SMBus Engine is simple to wire up. The following list shows PICmicro pin and package-independent pin
usage to aid in wiring up your Master I°C/SMBus Engine.

NOTE: Vpp must be 4.5V to 5.5V.
Don’t forget placing decoupling capacitors as close to the PICmicro as possible.
Keep wiring neat and keep component leads short.

PIN NAME PIN USEAGE

IMCLR/Vpp Connect to Vpp (or use your favorite reset circuit/reset supervisor)

Voo Connect BOTH Vpp pins to your 4.5V to 5.5V supply

Ves Connect BOTH Vs pins to your power supply ground

0SC1, OSC2 Connect your 18.432 MHz parallel-cut crystal to these pins. Don'’t forget your loading capacitors.
SCL I°C Bus SCL line (don’t forget your pull-up resistor to Vpp)

SDA I°C Bus SDA line (don’t forget your pull-up resistor to Vpp)

X Master I°C/SMBus Engine’s serial port transmit line - Connect to your MAX232

RX Master I°C/SMBus Engine’s serial port receive line - Connect to your MAX232

That's it. All other pins not named above may be left unconnected as they are configured as outputs.

Question: How will | know that the Master I°C/SMBus Engine is working?

Answer: Upon power-up of the PICmicro that hosts the Master I°C/SMBus Engine (or by a software reset command), the Master 12°C/SMBus Engine will
perform an ASCII dump to its serial port via the TX line (the display may vary somewhat depending on the firmware version or whether sticky
settings were changed, but you should see something like the following):

Mast er | 2C/ SMBus Engi ne
v1.0 (C) 2004 Ken Pergola

ASCl | Commands:
123SRF* _ #7172

SCL Frequency: 98 KHz
Bus Mbode: |2C
Sl ew Rate Mode: OFF

Page 10f 20 3/19/2004 2:04 PM v1.0.0

SERIAL TERMINAL SETUP

Although the Master I°C/SMBus Engine was primarily designed for the Cybiko Classic handheld computer using VTTerm application, it will work with
most standard PC-hosted terminal emulators such as:

Mtty Serial Terminal
HyperTerminal
Etc.

NOTE: If you wire up your Master 1°C/SMBus Engine such that it will be used with a PC’s serial port without a null modem adapter or cable, the Cybiko
will require a null-modem adapter. The converse is true as well: that is, if you wire up your Master I°C/SMBus Engine such that it will be used
with a Cybiko’s serial port without a null modem adapter or cable, a connection to a standard PC’s serial port will require a null-modem adapter

4.1 USING A PC-HOSTED SERIAL TERMINAL

Terminal UART settings:

115,200 bps

8N1 (8 data bits, no parity, 1 stop bit)
No hardware or software flow control
Local echo off

4.2 USING THE CIBIKO WIRELESS INTER-TAINMENT SYSTEM

Cybiko application: VTTerm v1.2 (written by Jeff Frohwein: http://www.devrs.com/cvbi ko/downl oad.php - Apps)

If the above link does not work, a search engine of ‘viterm’ should get you on track. Download vtterm.zip. Once unzipped, the two files you need to load
onto your Cybiko are VTTerm.app and ComPort.dI.

If you will be using the Cybiko because of its portability, invoke VTTerm (VT100 emulator for Cybiko) and ensure its settings are configured as follows:
The settings screen is invoked within VTTerm by hitting the Cybiko’s ‘Select’ button.

Terminal Settings

Baud Rate 115200
Data Bits 8

Stop Bits 1.0
Parity None
Handshake None
Font Size 5x7
Local Echo No

Page 10f 20 3/19/2004 2:04 PM v1.0.0

http://www.devrs.com/cybiko/download.php#apps

5.0 USER-INTERACTIVE ASCIl COMMANDS

MASTER I°C/SMBus ENGINE ASCIl COMMAND FUNCTION LIST ASCIl COMMAND

START_CONDITION
REPEATED_START_CONDITION
STOP_CONDITION
SEND_AND_CHECK_SLAVE_FOR_ACK
RECEIVE_AND_MASTER_ACK
RECEIVE_AND_MASTER_NACK

BUS RESET

SET_BUS_TYPE
SET_SCL_FREQUENCY
SET_OUTPUT_SLEW_CONTROL_MODE
SOFTWARE_RESET

HELP

*MA N WN =

=)= > ¥

These commands allow the user to manually communicate with I°C devices interactively via a serial terminal.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
START_CONDITION 1

Command function description:
Initiates a start condition on the bus.

User types the following character on the keyboard: 1

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
REPEATED_START_CONDITION 2

Command function description:
Initiates a repeated start condition on the bus.

User types the following character on the keyboard: 2

MASTER I°C/SMBus ENGINE ASCIl COMMAND FUNCTION ASCIl COMMAND
STOP_CONDITION 3

Command function description:
Initiates a stop condition on the bus.

User types the following character on the keyboard: 3

MASTER I°C/SMBus ENGINE ASCIl COMMAND FUNCTION ASCIl COMMAND
SEND_AND_CHECK_SLAVE_FOR_ACK S

Command function description:
Sends a byte over the bus. An automatic check for slave ACK is performed with this command.

User types the following character on the keyboard: S

User will then be prompted to enter a byte (in hexadecimal) to send to the slave device.

EXAMPLE:
If you want to send 0xAO to the slave device, type the following at the keyboard: SAO

NOTE: Uppercase ‘S’ and lowercase ‘s’ are permissible.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
RECEIVE_AND_MASTER_ACK R

Command function description:
Receives a byte from the bus. An automatic master ACK is generated with this command.

User types the following character on the keyboard: R

The byte read from the slave device will then be displayed on the screen.

NOTE: Uppercase ‘R’ and lowercase ‘r’ are permissible.

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
RECEIVE_AND_MASTER_NACK F

Command function description:
Receives a byte from the bus. An automatic master NACK is generated with this command.

User types the following character on the keyboard: F

The byte read from the slave device will then be displayed on the screen.

NOTE: Uppercase ‘F’ and lowercase ‘' are permissible.

MASTER I°C/SMBus ENGINE ASCIl COMMAND FUNCTION ASCIl COMMAND
BUS_RESET *

Command function description:
Generates a bus reset by initiating a back-to-back STOP condition, START condition, and STOP condition sequence.

User types the following character on the keyboard: *

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
SET_BUS_TYPE

Command function description:
Allows the bus type (I°C or SMBus) to be set.

User types the following character on the keyboard: _ (underscore character)

The bus mode will be displayed to the user and will toggle between 'FC’ and ‘SMBus’ when the user repeatedly types this command.

NOTE: This is a sticky setting that will be remembered and loaded upon Master 12C/SMBus Engine power-up.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE ASCIl COMMAND FUNCTION ASCIl COMMAND
SET_SCL_FREQUENCY #

Command function description:
Allows the user to set the Master I°C/SMBus Engine’s SCL frequency.

User types the following character on the keyboard: #
User will then be prompted to set the SCL Baud Register (in hexadecimal) — see Appendix A for list of frequency choices.

The SCL Baud Register is a 7-bit register. Any value entered exceeding 0x7F will be coerced to 7-bits.

The SCL frequency displayed to the user is an approximation and is unconditionally rounded down to the nearest KHz.

For example, with a SCL Baud Register value of 0x0A, the actual SCL frequency is 418.909 KHz, but will be displayed to the user as 418 KHz.
For the exact frequency that the Master PC/SMBus Engine outputs, please see APPENDIX A.

NOTE: This is a sticky setting that will be remembered and loaded upon Master 12C/SMBus Engine power-up.

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
SET_OUTPUT_SLEW_CONTROL_MODE A

Command function description:
Allows the user to set the Master I°C/SMBus Engine’s output slew control mode.

User types the following character on the keyboard: *

The output slew mode will be displayed to the user and will toggle between 'ON’ and ‘OFF’ when the user repeatedly types this command.

NOTE: This is a sticky setting that will be remembered and loaded upon Master 12C/SMBus Engine power-up.

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
SOFTWARE_RESET !

Command function description:
Generates a software reset on the target microcontroller that hosts the Master I>’C/SMBus Engine.
The software reset will reset and re-initialize the Master I°C/SMBus Engine, and display its current settings.
(On the Cybiko, it may take up to 4 seconds for the screen display to refresh after receiving this command.)

User types the following character on the keyboard: !

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE ASCII COMMAND FUNCTION ASCIl COMMAND
HELP ?

Command function description:
Displays the Master I>’C/SMBus Engine’s current configuration settings and the ASCII command list.
(On the Cybiko, it may take up to 4 seconds for the screen display to refresh after receiving this command.)

User types the following character on the keyboard: ?

NOTE: Due to the PICC-Lite’s limited program memory space for the PIC16F877/PIC16F877A microcontroller, there simply was no room left to display
detailed the ASCIl commands or help information.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

6.0 LOW-LEVEL BINARY COMMANDS

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION LIST BINARY COMMAND (hex)

START_CONDITION 0x80
REPEATED_START_CONDITION 0x81
STOP_CONDITION 0x82
SEND_AND_NO_CHECK_SLAVE_FOR_ACK 0x90
SEND_AND_CHECK_SLAVE_FOR_ACK 0x91
RECEIVE_AND_NO_MASTER_ACK_NACK 0xA0
RECEIVE_AND_MASTER_ACK 0xA1
RECEIVE_AND_MASTER_NACK 0xA2
CHECK_SLAVE_FOR_ACK 0xB0
MASTER ACK 0xCO0
MASTER NACK 0xC1
BUS_RESET 0xFO0
SOFTWARE_RESET O0xF1

These non-ASCIl commands allow the user to create high-level I°C device applications via the serial port.
For example, the MISE ActiveX DLL (MISE.dIl) wraps these functions and provides sample device drivers for various 1’Cc
devices:

Microchip MCP23016 1/0O expander

Texas Instruments PCF8574A 1/0 expander (second source of Philips' part)
Microchip 24XX00 serial EEPROM

Dallas Semiconductor DS1775 temperature sensor

Dallas Semiconductor DS1631/DS1631A/DS1731 temperature sensor

Texas Instruments AD1100 16-bit A/D converter

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
START_CONDITION 0x80

Command function description:
Initiates a start condition on the bus.
Host sends:
Byte #1: 0x80 (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Start condition was successful.
0x01: FAIL — Start condition failed.

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
REPEATED_START_CONDITION 0x81

Command function description:
Initiates a repeated start condition on the bus.
Host sends:
Byte #1: 0x81 (COMMAND FUNCTION)

FPC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS — Repeated start condition was successful.
0x01: FAIL — Repeated start condition failed.

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
STOP CONDITION 0x82

Command function description:
Initiates a stop condition on the bus.
Host sends:
Byte #1: 0x82 (COMMAND FUNCTION)

FPC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Stop condition was successful.
0x01: FAIL — Stop condition failed.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
SEND_AND_NO CHECK_SLAVE FOR_ACK 0x90

Command function description:
Sends a byte over the bus. No automatic check for slave ACK is performed with this command.

Host sends:
Byte #1: 0x90 (COMMAND FUNCTION)
Byte #2: 0xXX (where XX is the byte to send)
PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Byte was sent successfully.
0x01: FAIL — Byte was not sent successfully.

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
SEND_AND_CHECK_SLAVE_FOR_ACK 0x91

Command function description:
Sends a byte over the bus. An automatic check for slave ACK is performed with this command.

Host sends:

Byte #1: 0x91 (COMMAND FUNCTION)
Byte #2: 0xXX (where XX is the byte to send)

FPC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Byte was sent successfully.
0x01: FAIL — Byte was not sent successfully.

Byte #2: SLAVE ACK/NACK RESPONSE (applicable only if previous command function response code is PASS)
0x00: ACK — A slave ACK condition was detected.
0x01: NACK - A slave NACK condition was detected.

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
RECEIVE_AND NO_MASTER_ACK_NACK 0xA0

Command function description:
Receives a byte from the bus. No automatic master ACK or NACK is generated with this command.
Host sends:
Byte #1: 0xAO (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS — Byte was received successfully
0x01: FAIL — Byte was not received successfully.

Byte #2: Byte received (received byte is valid only if previous command function response code is PASS)
NOTE: This command would rarely be used in normal circumstances. Normally, either the RECEIVE_AND_MASTER_ACK or

RECEIVE_AND_MASTER_NACK command would be used due to their explicit and automatic generation of a master ACK and master NACK,
respectively.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
RECEIVE_AND_MASTER_ACK 0xA1

Command function description:
Receives a byte from the bus. An automatic master ACK is generated with this command.
Host sends:
Byte #1: 0xA1 (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Byte was received successfully
0x01: FAIL — Byte was not received successfully.

Byte #2: Byte received (received byte is valid only if previous command function response code is PASS)

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
RECEIVE_AND_MASTER_NACK 0xA2

Command function description:
Receives a byte from the bus. An automatic master NACK is generated with this command.
Host sends:
Byte #1: 0xA2 (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Byte was received successfully
0x01: FAIL — Byte was not received successfully.

Byte #2: Byte received (received byte is valid only if previous command function response code is PASS)

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
CHECK_SLAVE_FOR_ACK 0xB0

Command function description:
Checks the slave for ACK condition.
Host sends:
Byte #1: 0xBO (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: SLAVE ACK/NACK RESPONSE
0x00: ACK — A slave ACK condition was detected.
0x01: NACK — A slave NACK condition was detected.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
MASTER_ACK 0xCO0

Command function description:
Generates a master ACK condition on the bus.
Host sends:
Byte #1: 0xCO (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS — Master ACK was initiated successfully
0x01: FAIL — Master ACK was not initiated successfully.

NOTE: This command would rarely be used in normal circumstances. Normally, either the RECEIVE_AND_MASTER_ACK or
RECEIVE_AND_MASTER_NACK command would be used due to their explicit and automatic generation of a master ACK and master NACK,

respectively.
MASTER I‘C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
MASTER_NACK 0xC1

Command function description:
Generates a master NACK condition on the bus.
Host sends:
Byte #1: 0xC1 (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS — Master NACK was initiated successfully
0x01: FAIL — Master NACK was not initiated successfully.

NOTE: This command would rarely be used in normal circumstances. Normally, either the RECEIVE_AND_MASTER_ACK or
RECEIVE_AND_MASTER_NACK command would be used due to their explicit and automatic generation of a master ACK and master NACK,

respectively.
MASTER I‘C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
BUS_RESET 0xFO0

Command function description:
Generates a bus reset by initiating a back-to-back STOP condition, START condition, and STOP condition sequence.
Host sends:
Byte #1: 0xFO (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS - Bus reset was initiated successfully
0x01: FAIL — Bus reset was not initiated successfully.

Page 10f 20 3/19/2004 2:04 PM v1.0.0

MASTER I°C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
SOFTWARE_RESET 0xF1

Command function description:
Generates a software-reset on the target microcontroller that hosts the Master I>’C/SMBus Engine.
The software reset will reset and re-initialize the Master 1°C/SMBus Engine, and the ASCII power-up screen will be dumped to the serial port.

Host sends:
Byte #1: 0xF1 (COMMAND FUNCTION)

PC/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS — Software reset was successful.
0x01: FAIL — Software reset was not successful.

NOTE: After a PASS code is received, the microcontroller that hosts the Master I’C/SMBus Engine will output its ASCII power-up screen to the serial
port. Therefore, any PC host software should take this into account and perform the following steps with regard to this command:

1) Issue SOFTWARE_RESET command

2) Wait for the PASS code from the Master I’C/SMBus Engine
3) Delay 500 milliseconds

4) Clear the PC’s UART receive buffer

Page 10f 20 3/19/2004 2:04 PM v1.0.0

7.0

ActiveX DLL: MISE.dII

The Master I’C/SMBus Engine can be controlled with an ActiveX DLL that wraps the binary command set as well as provides specific device drivers for
various I°C/SMBus devices. The MISE ActiveX DLL (MISE.dll) was created in Visual Basic 6.0. Users may explore it within the Visual Basic Object
Browser and must set a reference to it (Project menu > References) before using it.

7.1 IN-PROCESS COMPONENT BASE ADDRESS

The base address for the MISE.dIl is: 0x1000000

7.2 DLL EXCEPTION ERROR CODES (DLL version v1.0.0)

It would be a sin if | did not publish the unique exception error codes that | have created for this DLL. Don’t forget that your client code must
have error handling to accommodate these exceptions.

COMMUNICATION_TIMEOUT = 0x80040201
(Serial communication timeout.)

START_CONDITION_FAILURE = 0x80040202
(I2C/SMBus START condition failed.)

REPEATED_START_CONDITION_FAILURE = 0x80040203
(12C/SMBus REPEATED START condition failed.)

STOP_CONDITION_FAILURE = 0x80040204
(12C/SMBus STOP condition failed.)

SOFTWARE_RESET_FAILURE = 0x80040205
(Attempt to software reset the Master I2C/SMBus Engine failed.)

SEND_BYTE_FAILURE = 0x80040206
(Attempt to initiate an 12C/SMBus send byte operation failed.)

RECEIVE_BYTE_FAILURE = 0x80040207
(Attempt to initiate an I2C/SMBus receive byte operation failed.)

MASTER_ACK_FAILURE = 0x80040208
(Attempt to initiate an 12C/SMBus MASTER ACK failed.

MASTER_NACK_FAILURE = 0x80040209
(Attempt to initiate an 12C/SMBus MASTER NACK failed.)

SLAVE_ACKNOWLEDGE_FAILURE = 0x8004020A
(Slave did not acknowledge the byte sent to it.)

ILLEGAL_DEVICE_ADDRESS = 0x8004020B
(The attempt to set the device address failed because an illegal device address for the particular device was selected.)

ILLEGAL_CONVERSION_RESOLUTION = 0x8004020C
(The attempt to set the temperature resolution failed because an illegal conversion resolution for the particular device was selected.)

ILLEGAL_FAULT_TOLERANCE_VALUE = 0x8004020D
(The attempt to set the fault tolerance count failed because an illegal fault tolerance count for the particular device was selected.)

ILLEGAL_GAIN_VALUE = 0x8004020E
(The attempt to set the gain failed because an illegal gain for the particular device was selected.)

ILLEGAL_SAMPLE_RATE_VALUE = 0x8004020F
(The attempt to set the ADC sample rate failed because an illegal sample rate for the particular device was selected.)

Page 10f 20 3/19/2004 2:04 PM v1.0.0

7.2 USING THE MISE DLL IN VISUAL BASIC 6

Before using the MISE DLL in Visual Basic, you must first set a reference to it by Selecting the PROJECT menu, then the References... menu item.
Then you just browse to where the MISE.dIl file is located, click Open in the Add Reference dialog box, then click OK in the main References dialog
box. Now you are ready to use the DLL. Here’s a quick snippet to get you started:

On Error GoTo ErrorHandl er

Decl are an object variable reference to the serial port class
Dim Serial Port As clsSerial Port_v100

Create instance of object
Set Serial Port = New clsSerial Port_v100

Decl are an object variable reference to the | owlevel |12C SMBus Engi ne cl ass
Dim|2C SMBus As cl sMaster_| 2C_SMBus_v100

' Create instance of object

Set 12C_SMBus = New cl sMaster_| 2C_SMBus_v100

Decl are an object variable reference to the ADS1100 anal og-to-digital converter class
Di m ADS1100 As cl sADS1100_v100

' Create instance of object

Set ADS1100 = New cl sADS1100_v100

Di m | ngADC_Result As Long

Easy way to open serial port
Cal | Serial Port.Communi cati onPort_OpenByPort Nunber (2)

Al ternate nethod for opening serial port:
' Seri al Port. Communi cati onPort Nunber = 2
' Cal | Serial Port.Communi cati onPort_OpenExi stingPort

Use the '12C SMBus' object to invoke the
Master |2C/ SMBus binary command set for the |owlevel |12C SMBus net hods:

| 2C_SMBus. BusReset
' Just sone exanpl es
| 2C_SMBus. St art Condi tion

' 1 2C_SMBus. St opCondi ti on

**%%* Texas Instrunents 16-bit anal og-to-digital converter

Thi's snippet shows how to use one of the existing M SE device drivers

Set the gain of the ADC input
Cal | ADS1100. Set Gai nTo_1

Set sanpling frequency
Cal | ADS1100. Set Sanpl eRat eTo_8_SPS

Set continuous sanpling node
Cal | ADS1100. ConfigurationBit_SC C ear

Grab the current ADC result
| ngADC_Resul t = ADS1100. ADC_Qut put Resul t

Display the result to the user in decinmal and in hexadecinal
MsgBox "ADC result (decinal) =" & I ngADC Result & vbCrLf & _
"ADC result (hex) =" & Hex$(lngADC Result)

Kok kkk

Close the active serial port
Cal | Serial Port.Conmmuni cati onPort_Cl ose

Cl ear object variable references
Set ADS1100 = Not hi ng
Set Serial Port = Nothing
Set 12C _SMBus = Not hing

Exit Sub
ErrorHandl er:
Do your error processing here

Just as an exanple, show the error info to user

MsgBox "An error/exception has occurred." & vbCrLf & vbCrLf & _
"Error nunber: " & Hex$(Err.Nunber) & vbCrLf & _

"Error description: " & Err.Description & vbCrLf & _
"Error source: " & Err.Source

Page 10f 20 3/19/2004 2:04 PM v1.0.0

APPENDIX A - ACTUAL MASTER I°C/SMBus ENGINE SCL FREQUENCIES

NOTE: The SCL Baud Register is effectively a 7-bit register that allows a total of 128 different SCL frequencies to be selected.

SCL BAUD REGISTER (hex) SCL FREQUENCY (Hz) SCL BAUD REGISTER (hex) | SCL FREQUENCY (Hz)
0

4,608,000 40 70,892
01 2,304,000 41 69,818
02 1,536,000 42 68,776
03 1,152,000 43 67,765
04 921,600 44 66,783
05 768,000 45 65,829
06 658,286 46 64,901
07 576,000 47 64,000
08 512,000 48 63,123
09 460,800 49 62,270
0A 418,909 4A 61,440
0B 384,000 4B 60,632
0oC 354,462 4C 59,844
[¢/s] 329,143 4D 59,077
OE 307,200 4E 58,329
OF 288,000 4F 57,600
10 271,059 50 56,889
11 256,000 51 56,195
12 242,526 52 55,518
13 230,400 53 54,857
14 219,429 54 54,212
15 209,455 55 53,581
16 200,348 56 52,966
17 192,000 57 52,364
18 184,320 58 51,775
19 177,231 59 51,200
1A 170,667 5A 50,637
1B 164,571 5B 50,087
1C 158,897 5C 49,548
1D 153,600 5D 49,021
1E 148,645 5E 48,505
1F 144,000 5F 48,000
20 139,636 60 47,505
21 135,529 61 47,020
22 131,657 62 46,545
23 128,000 63 46,080
24 124,541 64 45,624
25 121,263 65 45,176
26 118,154 66 44,738
27 115,200 67 44,308
28 112,390 68 43,886
29 109,714 69 43,472
2A 107,163 6A 43,065
2B 104,727 6B 42,667
2C 102,400 6C 42,275
2D 100,174 6D 41,891
2E 98,043 6E 41,514
2F 96,000 6F 41,143
30 94,041 70 40,779
31 92,160 71 40,421
32 90,353 72 40,070
33 88,615 73 39,724
34 86,943 74 39,385
35 85,333 75 39,051
36 83,782 76 38,723
37 82,286 77 38,400
38 80,842 78 38,083
39 79,448 79 37,770
3A 78,102 7A 37,463
3B 76,800 7B 37,161
3C 75,541 7C 36,864
3D 74,323 7D 36,571
3E 73,143 7E 36,283
3F 72,000 7F 36,000

Page 10f 20 3/19/2004 2:04 PM v1.0.0

APPENDIX B - DOCUMENT REVISION HISTORY

v1.0.0 — 03-18-2004 — Kenneth Michael Pergola (KMP)
Initial preliminary release of the Master I°C/SMBus Engine document.

| apologize for the sparse documentation, but | hope this project is simple enough for people to use with the info in this document.

You can usually find me on the PICLIST if you have any questions. Or you can e-mail me privately at: no_spam@]localnet.com.

That is not a typo — that's my real e-mail address — at least for now. If you find any mistakes or find parts of this document that are confusing
please let me know. Thanks, and hope you find the Master I>*C/SMBus Engine as useful as | have found it to be (especially when used in

conjunction with the Cybiko classic).

Page 10f 20 3/19/2004 2:04 PM v1.0.0

mailto: no_spam@localnet.com

APPENDIX C - FAQ (FREQUENTLY ASKED QUESTIONS)

NO FAQ LIST AT THIS TIME

Page 10f 20 3/19/2004 2:04 PM v1.0.0

