
Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MMMaaasssttteeerrr III222CCC /// SSSMMMBBBuuusss EEEnnngggiiinnneee

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

1.0 INTRODUCTION

The Master I2C/SMBus Engine (MISE) is a serial to I2C/SMBus bridge utility that allows users to quickly and easily communicate with I2C and/or SMBus
devices via any serial port that handles asynchronous serial communications at 115,200 bps with a 8N1 data format (8 data bits, no parity, 1 stop bit).
MISE supports ASCII-based human interactive commands in addition to a separate binary command set that allows users to build I2C/SMBus Personal
Computer (PC) applications with their favorite high-level language such as C/C++, Visual Basic, etc. Since the MISE is hosted by a Microchip
PIC16F877 or PIC16F877A microcontroller that has an on-board I2C/SMBus engine, the user need not get bogged down with the actual implementation
of the I2C/SMBus low-level functions. The MISE can be configured to use different SCL clock frequencies, and the bus type (I2C or SMBus) as well as
the slew rate control can be changed and are sticky settings so that they will be retained upon subsequent power-ups.

If you ever wanted to have an I2C/SMBus port on your PC then the Master I2C/SMBus Engine is for you!

2.0 SYSTEM BLOCK DIAGRAM

PERSONAL COMPUTER
or

CYBIKO

MAX232
(or equivalent)

Master I2C/SMBus Engine (MISE)
(PIC16F877 / PIC16F877A)

I2C DEVICE18.432 MHz crystal

NOTE: Don’t forget the details: crystal load capacitors, decoupling capacitors across the power supply pins, and pull-up resistors on the I2C bus.

The PIC16F877/PIC16F877A microcontroller must be supplied with an 18.432 MHz parallel-cut crystal and appropriate loading capacitors. Consult
crystal manufacturer’s data sheet for capacitor values, but 33 pF should be a good starting point.

The I2C must have appropriate pull-up resistors on the SDA and SCL lines. Consult the latest Philips I2C Bus Specification for detailed information
regarding pull-up resistors, but 3.0 K ohm resistors would be a good starting point.

 A MAX232 or equivalent TTL-to-RS-232 level translator must be used if the asynchronous serial port implements the RS-232 electrical specification.
 Don’t forget to connect the serial port’s ground to the Master I2C/SMBus Engine ground!

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

4.0 PIC16F877/PIC16F877A PIN USEAGE

From a hardware perspective, the Master I2C/SMBus Engine is simple to wire up. The following list shows PICmicro pin and package-independent pin
usage to aid in wiring up your Master I2C/SMBus Engine.

NOTE: VDD must be 4.5V to 5.5V.

Don’t forget placing decoupling capacitors as close to the PICmicro as possible.
 Keep wiring neat and keep component leads short.

PIN NAME PIN USEAGE

/MCLR/VPP Connect to VDD (or use your favorite reset circuit/reset supervisor)
VDD Connect BOTH VDD pins to your 4.5V to 5.5V supply
Vss Connect BOTH VSS pins to your power supply ground
OSC1, OSC2 Connect your 18.432 MHz parallel-cut crystal to these pins. Don’t forget your loading capacitors.
SCL I2C Bus SCL line (don’t forget your pull-up resistor to VDD)
SDA I2C Bus SDA line (don’t forget your pull-up resistor to VDD)
TX Master I2C/SMBus Engine’s serial port transmit line - Connect to your MAX232
RX Master I2C/SMBus Engine’s serial port receive line - Connect to your MAX232

That’s it. All other pins not named above may be left unconnected as they are configured as outputs.

Question: How will I know that the Master I2C/SMBus Engine is working?

Answer: Upon power-up of the PICmicro that hosts the Master I2C/SMBus Engine (or by a software reset command), the Master I2C/SMBus Engine will

perform an ASCII dump to its serial port via the TX line (the display may vary somewhat depending on the firmware version or whether sticky
settings were changed, but you should see something like the following):

Master I2C/SMBus Engine
v1.0 (C) 2004 Ken Pergola

ASCII Commands:
1 2 3 S R F * _ # ^ ! ?

SCL Frequency: 98 KHz
Bus Mode: I2C
Slew Rate Mode: OFF

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

4.0 SERIAL TERMINAL SETUP

Although the Master I2C/SMBus Engine was primarily designed for the Cybiko Classic handheld computer using VTTerm application, it will work with
most standard PC-hosted terminal emulators such as:

Mtty Serial Terminal

 HyperTerminal
 Etc.

NOTE: If you wire up your Master I2C/SMBus Engine such that it will be used with a PC’s serial port without a null modem adapter or cable, the Cybiko
will require a null-modem adapter. The converse is true as well: that is, if you wire up your Master I2C/SMBus Engine such that it will be used
with a Cybiko’s serial port without a null modem adapter or cable, a connection to a standard PC’s serial port will require a null-modem adapter

4.1 USING A PC-HOSTED SERIAL TERMINAL

 Terminal UART settings:

115,200 bps
8N1 (8 data bits, no parity, 1 stop bit)

 No hardware or software flow control
 Local echo off

4.2 USING THE CIBIKO WIRELESS INTER-TAINMENT SYSTEM

 Cybiko application: VTTerm v1.2 (written by Jeff Frohwein: http://www.devrs.com/cybiko/download.php - apps)
If the above link does not work, a search engine of ‘vtterm’ should get you on track. Download vtterm.zip. Once unzipped, the two files you need to load
onto your Cybiko are VTTerm.app and ComPort.dl.

 If you will be using the Cybiko because of its portability, invoke VTTerm (VT100 emulator for Cybiko) and ensure its settings are configured as follows:
 The settings screen is invoked within VTTerm by hitting the Cybiko’s ‘Select’ button.

 Terminal Settings
 Baud Rate 115200

 Data Bits 8
 Stop Bits 1.0
 Parity None
 Handshake None
 Font Size 5x7
 Local Echo No

http://www.devrs.com/cybiko/download.php#apps

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

5.0 USER-INTERACTIVE ASCII COMMANDS

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION LIST ASCII COMMAND
START_CONDITION 1
REPEATED_START_CONDITION 2
STOP_CONDITION 3
SEND_AND_CHECK_SLAVE_FOR_ACK S
RECEIVE_AND_MASTER_ACK R
RECEIVE_AND_MASTER_NACK F
BUS RESET *
SET_BUS_TYPE _
SET_SCL_FREQUENCY #
SET_OUTPUT_SLEW_CONTROL_MODE ^
SOFTWARE_RESET !
HELP ?

These commands allow the user to manually communicate with I2C devices interactively via a serial terminal.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
START_CONDITION 1

Command function description:

Initiates a start condition on the bus.

 User types the following character on the keyboard: 1

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
REPEATED_START_CONDITION 2

Command function description:

Initiates a repeated start condition on the bus.

 User types the following character on the keyboard: 2

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
STOP_CONDITION 3

Command function description:

Initiates a stop condition on the bus.

 User types the following character on the keyboard: 3

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
SEND_AND_CHECK_SLAVE_FOR_ACK S

Command function description:

Sends a byte over the bus. An automatic check for slave ACK is performed with this command.

 User types the following character on the keyboard: S

 User will then be prompted to enter a byte (in hexadecimal) to send to the slave device.

 EXAMPLE:
 If you want to send 0xA0 to the slave device, type the following at the keyboard: SA0

 NOTE: Uppercase ‘S’ and lowercase ‘s’ are permissible.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
RECEIVE_AND_MASTER_ACK R

Command function description:

Receives a byte from the bus. An automatic master ACK is generated with this command.

 User types the following character on the keyboard: R

The byte read from the slave device will then be displayed on the screen.

 NOTE: Uppercase ‘R’ and lowercase ‘r’ are permissible.

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
RECEIVE_AND_MASTER_NACK F

Command function description:

Receives a byte from the bus. An automatic master NACK is generated with this command.

 User types the following character on the keyboard: F

The byte read from the slave device will then be displayed on the screen.

 NOTE: Uppercase ‘F’ and lowercase ‘f’ are permissible.

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
BUS_RESET *

Command function description:

Generates a bus reset by initiating a back-to-back STOP condition, START condition, and STOP condition sequence.

 User types the following character on the keyboard: *

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
SET_BUS_TYPE _

Command function description:

Allows the bus type (I2C or SMBus) to be set.

 User types the following character on the keyboard: _ (underscore character)

The bus mode will be displayed to the user and will toggle between ’I2C’ and ‘SMBus’ when the user repeatedly types this command.

 NOTE: This is a sticky setting that will be remembered and loaded upon Master I2C/SMBus Engine power-up.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
SET_SCL_FREQUENCY #

Command function description:

Allows the user to set the Master I2C/SMBus Engine’s SCL frequency.

 User types the following character on the keyboard: #
 User will then be prompted to set the SCL Baud Register (in hexadecimal) – see Appendix A for list of frequency choices.

The SCL Baud Register is a 7-bit register. Any value entered exceeding 0x7F will be coerced to 7-bits.
The SCL frequency displayed to the user is an approximation and is unconditionally rounded down to the nearest KHz.
For example, with a SCL Baud Register value of 0x0A, the actual SCL frequency is 418.909 KHz, but will be displayed to the user as 418 KHz.
For the exact frequency that the Master I2C/SMBus Engine outputs, please see APPENDIX A.

 NOTE: This is a sticky setting that will be remembered and loaded upon Master I2C/SMBus Engine power-up.

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
SET_OUTPUT_SLEW_CONTROL_MODE ^

Command function description:

Allows the user to set the Master I2C/SMBus Engine’s output slew control mode.

 User types the following character on the keyboard: ^

The output slew mode will be displayed to the user and will toggle between ’ON’ and ‘OFF’ when the user repeatedly types this command.

 NOTE: This is a sticky setting that will be remembered and loaded upon Master I2C/SMBus Engine power-up.

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
SOFTWARE_RESET !

Command function description:

Generates a software reset on the target microcontroller that hosts the Master I2C/SMBus Engine.
The software reset will reset and re-initialize the Master I2C/SMBus Engine, and display its current settings.

 (On the Cybiko, it may take up to 4 seconds for the screen display to refresh after receiving this command.)

 User types the following character on the keyboard: !

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE ASCII COMMAND FUNCTION ASCII COMMAND
HELP ?

Command function description:

Displays the Master I2C/SMBus Engine’s current configuration settings and the ASCII command list.
 (On the Cybiko, it may take up to 4 seconds for the screen display to refresh after receiving this command.)

User types the following character on the keyboard: ?

NOTE: Due to the PICC-Lite’s limited program memory space for the PIC16F877/PIC16F877A microcontroller, there simply was no room left to display
detailed the ASCII commands or help information.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

6.0 LOW-LEVEL BINARY COMMANDS

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION LIST BINARY COMMAND (hex)
START_CONDITION 0x80
REPEATED_START_CONDITION 0x81
STOP_CONDITION 0x82
SEND_AND_NO_CHECK_SLAVE_FOR_ACK 0x90
SEND_AND_CHECK_SLAVE_FOR_ACK 0x91
RECEIVE_AND_NO_MASTER_ACK_NACK 0xA0
RECEIVE_AND_MASTER_ACK 0xA1
RECEIVE_AND_MASTER_NACK 0xA2
CHECK_SLAVE_FOR_ACK 0xB0
MASTER ACK 0xC0
MASTER NACK 0xC1
BUS_RESET 0xF0
SOFTWARE_RESET 0xF1

These non-ASCII commands allow the user to create high-level I2C device applications via the serial port.
For example, the MISE ActiveX DLL (MISE.dll) wraps these functions and provides sample device drivers for various I2C
devices:

• Microchip MCP23016 I/O expander

• Texas Instruments PCF8574A I/O expander (second source of Philips' part)

• Microchip 24XX00 serial EEPROM

• Dallas Semiconductor DS1775 temperature sensor

• Dallas Semiconductor DS1631/DS1631A/DS1731 temperature sensor

• Texas Instruments AD1100 16-bit A/D converter

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
START_CONDITION 0x80

Command function description:

Initiates a start condition on the bus.

 Host sends:

Byte #1: 0x80 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Start condition was successful.

 0x01: FAIL – Start condition failed.

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
REPEATED_START_CONDITION 0x81

Command function description:

Initiates a repeated start condition on the bus.

 Host sends:

Byte #1: 0x81 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Repeated start condition was successful.

 0x01: FAIL – Repeated start condition failed.

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
STOP CONDITION 0x82

Command function description:

Initiates a stop condition on the bus.

 Host sends:

Byte #1: 0x82 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Stop condition was successful.

 0x01: FAIL – Stop condition failed.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
SEND_AND_NO_CHECK_SLAVE_FOR_ACK 0x90

Command function description:

Sends a byte over the bus. No automatic check for slave ACK is performed with this command.

 Host sends:

Byte #1: 0x90 (COMMAND FUNCTION)
 Byte #2: 0xXX (where XX is the byte to send)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Byte was sent successfully.

 0x01: FAIL – Byte was not sent successfully.

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
SEND_AND_CHECK_SLAVE_FOR_ACK 0x91

Command function description:

Sends a byte over the bus. An automatic check for slave ACK is performed with this command.

 Host sends:

Byte #1: 0x91 (COMMAND FUNCTION)
 Byte #2: 0xXX (where XX is the byte to send)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Byte was sent successfully.

 0x01: FAIL – Byte was not sent successfully.

Byte #2: SLAVE ACK/NACK RESPONSE (applicable only if previous command function response code is PASS)

0x00: ACK – A slave ACK condition was detected.
 0x01: NACK – A slave NACK condition was detected.

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
RECEIVE_AND_NO_MASTER_ACK_NACK 0xA0

Command function description:

Receives a byte from the bus. No automatic master ACK or NACK is generated with this command.

 Host sends:

Byte #1: 0xA0 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Byte was received successfully

 0x01: FAIL – Byte was not received successfully.

 Byte #2: Byte received (received byte is valid only if previous command function response code is PASS)

NOTE: This command would rarely be used in normal circumstances. Normally, either the RECEIVE_AND_MASTER_ACK or
RECEIVE_AND_MASTER_NACK command would be used due to their explicit and automatic generation of a master ACK and master NACK,
respectively.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
RECEIVE_AND_MASTER_ACK 0xA1

Command function description:

Receives a byte from the bus. An automatic master ACK is generated with this command.

 Host sends:

Byte #1: 0xA1 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Byte was received successfully

 0x01: FAIL – Byte was not received successfully.

 Byte #2: Byte received (received byte is valid only if previous command function response code is PASS)

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
RECEIVE_AND_MASTER_NACK 0xA2

Command function description:

Receives a byte from the bus. An automatic master NACK is generated with this command.

 Host sends:

Byte #1: 0xA2 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Byte was received successfully

 0x01: FAIL – Byte was not received successfully.

 Byte #2: Byte received (received byte is valid only if previous command function response code is PASS)

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
CHECK_SLAVE_FOR_ACK 0xB0

Command function description:

Checks the slave for ACK condition.

 Host sends:

Byte #1: 0xB0 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: SLAVE ACK/NACK RESPONSE
0x00: ACK – A slave ACK condition was detected.

 0x01: NACK – A slave NACK condition was detected.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
MASTER_ACK 0xC0

Command function description:

Generates a master ACK condition on the bus.

 Host sends:

Byte #1: 0xC0 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Master ACK was initiated successfully

 0x01: FAIL – Master ACK was not initiated successfully.

NOTE: This command would rarely be used in normal circumstances. Normally, either the RECEIVE_AND_MASTER_ACK or

RECEIVE_AND_MASTER_NACK command would be used due to their explicit and automatic generation of a master ACK and master NACK,
respectively.

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
MASTER_NACK 0xC1

Command function description:

Generates a master NACK condition on the bus.

 Host sends:

Byte #1: 0xC1 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Master NACK was initiated successfully

 0x01: FAIL – Master NACK was not initiated successfully.

NOTE: This command would rarely be used in normal circumstances. Normally, either the RECEIVE_AND_MASTER_ACK or
RECEIVE_AND_MASTER_NACK command would be used due to their explicit and automatic generation of a master ACK and master NACK,
respectively.

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
BUS_RESET 0xF0

Command function description:

Generates a bus reset by initiating a back-to-back STOP condition, START condition, and STOP condition sequence.

 Host sends:

Byte #1: 0xF0 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Bus reset was initiated successfully

 0x01: FAIL – Bus reset was not initiated successfully.

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

MASTER I2C/SMBus ENGINE BINARY COMMAND FUNCTION BINARY COMMAND
SOFTWARE_RESET 0xF1

Command function description:

Generates a software-reset on the target microcontroller that hosts the Master I2C/SMBus Engine.
The software reset will reset and re-initialize the Master I2C/SMBus Engine, and the ASCII power-up screen will be dumped to the serial port.

 Host sends:

Byte #1: 0xF1 (COMMAND FUNCTION)

 I2C/SMBus Engine response:

Byte #1: COMMAND FUNCTION PASS/FAIL RESPONSE
0x00: PASS – Software reset was successful.

 0x01: FAIL – Software reset was not successful.

NOTE: After a PASS code is received, the microcontroller that hosts the Master I2C/SMBus Engine will output its ASCII power-up screen to the serial
port. Therefore, any PC host software should take this into account and perform the following steps with regard to this command:

1) Issue SOFTWARE_RESET command
2) Wait for the PASS code from the Master I2C/SMBus Engine
3) Delay 500 milliseconds
4) Clear the PC’s UART receive buffer

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

7.0 ActiveX DLL: MISE.dll

The Master I2C/SMBus Engine can be controlled with an ActiveX DLL that wraps the binary command set as well as provides specific device drivers for
various I2C/SMBus devices. The MISE ActiveX DLL (MISE.dll) was created in Visual Basic 6.0. Users may explore it within the Visual Basic Object
Browser and must set a reference to it (Project menu > References) before using it.

7.1 IN-PROCESS COMPONENT BASE ADDRESS

The base address for the MISE.dll is: 0x1000000

7.2 DLL EXCEPTION ERROR CODES (DLL version v1.0.0)

It would be a sin if I did not publish the unique exception error codes that I have created for this DLL. Don’t forget that your client code must
have error handling to accommodate these exceptions.

 COMMUNICATION_TIMEOUT = 0x80040201
 (Serial communication timeout.)

START_CONDITION_FAILURE = 0x80040202
 (I2C/SMBus START condition failed.)

REPEATED_START_CONDITION_FAILURE = 0x80040203
 (I2C/SMBus REPEATED START condition failed.)

STOP_CONDITION_FAILURE = 0x80040204
 (I2C/SMBus STOP condition failed.)

SOFTWARE_RESET_FAILURE = 0x80040205
 (Attempt to software reset the Master I2C/SMBus Engine failed.)

SEND_BYTE_FAILURE = 0x80040206
 (Attempt to initiate an I2C/SMBus send byte operation failed.)

RECEIVE_BYTE_FAILURE = 0x80040207

 (Attempt to initiate an I2C/SMBus receive byte operation failed.)

MASTER_ACK_FAILURE = 0x80040208
 (Attempt to initiate an I2C/SMBus MASTER ACK failed.

MASTER_NACK_FAILURE = 0x80040209
 (Attempt to initiate an I2C/SMBus MASTER NACK failed.)

SLAVE_ACKNOWLEDGE_FAILURE = 0x8004020A
 (Slave did not acknowledge the byte sent to it.)

ILLEGAL_DEVICE_ADDRESS = 0x8004020B
 (The attempt to set the device address failed because an illegal device address for the particular device was selected.)

ILLEGAL_CONVERSION_RESOLUTION = 0x8004020C
 (The attempt to set the temperature resolution failed because an illegal conversion resolution for the particular device was selected.)

ILLEGAL_FAULT_TOLERANCE_VALUE = 0x8004020D
(The attempt to set the fault tolerance count failed because an illegal fault tolerance count for the particular device was selected.)

ILLEGAL_GAIN_VALUE = 0x8004020E

 (The attempt to set the gain failed because an illegal gain for the particular device was selected.)

ILLEGAL_SAMPLE_RATE_VALUE = 0x8004020F
 (The attempt to set the ADC sample rate failed because an illegal sample rate for the particular device was selected.)

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

7.2 USING THE MISE DLL IN VISUAL BASIC 6

Before using the MISE DLL in Visual Basic, you must first set a reference to it by Selecting the PROJECT menu, then the References… menu item.
Then you just browse to where the MISE.dll file is located, click Open in the Add Reference dialog box, then click OK in the main References dialog
box. Now you are ready to use the DLL. Here’s a quick snippet to get you started:

 On Error GoTo ErrorHandler

 ' Declare an object variable reference to the serial port class
 Dim SerialPort As clsSerialPort_v100

 ' Create instance of object
 Set SerialPort = New clsSerialPort_v100

 ' Declare an object variable reference to the low-level I2C/SMBus Engine class
 Dim I2C_SMBus As clsMaster_I2C_SMBus_v100

 ' Create instance of object
 Set I2C_SMBus = New clsMaster_I2C_SMBus_v100

 ' Declare an object variable reference to the ADS1100 analog-to-digital converter class
 Dim ADS1100 As clsADS1100_v100

 ' Create instance of object
 Set ADS1100 = New clsADS1100_v100

 Dim lngADC_Result As Long

 ' Easy way to open serial port
 Call SerialPort.CommunicationPort_OpenByPortNumber(2)

 ' Alternate method for opening serial port:
' SerialPort.CommunicationPortNumber = 2
' Call SerialPort.CommunicationPort_OpenExistingPort

 ' Use the 'I2C_SMBus' object to invoke the
 ' Master I2C/SMBus binary command set for the low-level I2C/SMBus methods:

 I2C_SMBus.BusReset

 ' Just some examples
' I2C_SMBus.StartCondition
'
' I2C_SMBus.StopCondition

 ' ***** Texas Instruments 16-bit analog-to-digital converter

 ' This snippet shows how to use one of the existing MISE device drivers

 ' Set the gain of the ADC input
 Call ADS1100.SetGainTo_1

 ' Set sampling frequency
 Call ADS1100.SetSampleRateTo_8_SPS

 ' Set continuous sampling mode
 Call ADS1100.ConfigurationBit_SC_Clear

 ' Grab the current ADC result
 lngADC_Result = ADS1100.ADC_OutputResult

 ' Display the result to the user in decimal and in hexadecimal
 MsgBox "ADC result (decimal) = " & lngADC_Result & vbCrLf & _
 "ADC result (hex) = " & Hex$(lngADC_Result)
 ' *****

 ' Close the active serial port
 Call SerialPort.CommunicationPort_Close

 ' Clear object variable references
 Set ADS1100 = Nothing
 Set SerialPort = Nothing
 Set I2C_SMBus = Nothing

 Exit Sub

ErrorHandler:

 ' Do your error processing here
 '
 '

 ' Just as an example, show the error info to user
 MsgBox "An error/exception has occurred." & vbCrLf & vbCrLf & _
 "Error number: " & Hex$(Err.Number) & vbCrLf & _
 "Error description: " & Err.Description & vbCrLf & _
 "Error source: " & Err.Source

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

APPENDIX A – ACTUAL MASTER I2C/SMBus ENGINE SCL FREQUENCIES

NOTE: The SCL Baud Register is effectively a 7-bit register that allows a total of 128 different SCL frequencies to be selected.

SCL BAUD REGISTER (hex) SCL FREQUENCY (Hz)
0 4,608,000
01 2,304,000
02 1,536,000
03 1,152,000
04 921,600
05 768,000
06 658,286
07 576,000
08 512,000
09 460,800
0A 418,909
0B 384,000
0C 354,462
0D 329,143
0E 307,200
0F 288,000
10 271,059
11 256,000
12 242,526
13 230,400
14 219,429
15 209,455
16 200,348
17 192,000
18 184,320
19 177,231
1A 170,667
1B 164,571
1C 158,897
1D 153,600
1E 148,645
1F 144,000
20 139,636
21 135,529
22 131,657
23 128,000
24 124,541
25 121,263
26 118,154
27 115,200
28 112,390
29 109,714
2A 107,163
2B 104,727
2C 102,400
2D 100,174
2E 98,043
2F 96,000
30 94,041
31 92,160
32 90,353
33 88,615
34 86,943
35 85,333
36 83,782
37 82,286
38 80,842
39 79,448
3A 78,102
3B 76,800
3C 75,541
3D 74,323
3E 73,143
3F 72,000

SCL BAUD REGISTER (hex) SCL FREQUENCY (Hz)
40 70,892
41 69,818
42 68,776
43 67,765
44 66,783
45 65,829
46 64,901
47 64,000
48 63,123
49 62,270
4A 61,440
4B 60,632
4C 59,844
4D 59,077
4E 58,329
4F 57,600
50 56,889
51 56,195
52 55,518
53 54,857
54 54,212
55 53,581
56 52,966
57 52,364
58 51,775
59 51,200
5A 50,637
5B 50,087
5C 49,548
5D 49,021
5E 48,505
5F 48,000
60 47,505
61 47,020
62 46,545
63 46,080
64 45,624
65 45,176
66 44,738
67 44,308
68 43,886
69 43,472
6A 43,065
6B 42,667
6C 42,275
6D 41,891
6E 41,514
6F 41,143
70 40,779
71 40,421
72 40,070
73 39,724
74 39,385
75 39,051
76 38,723
77 38,400
78 38,083
79 37,770
7A 37,463
7B 37,161
7C 36,864
7D 36,571
7E 36,283
7F 36,000

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

APPENDIX B – DOCUMENT REVISION HISTORY

v1.0.0 – 03-18-2004 – Kenneth Michael Pergola (KMP)

Initial preliminary release of the Master I2C/SMBus Engine document.

I apologize for the sparse documentation, but I hope this project is simple enough for people to use with the info in this document.
You can usually find me on the PICLIST if you have any questions. Or you can e-mail me privately at: no_spam@localnet.com.
That is not a typo – that’s my real e-mail address – at least for now. If you find any mistakes or find parts of this document that are confusing
please let me know. Thanks, and hope you find the Master I2C/SMBus Engine as useful as I have found it to be (especially when used in
conjunction with the Cybiko classic).

mailto: no_spam@localnet.com

Page 1 of 20 3/19/2004 2:04 PM v1.0.0

APPENDIX C – FAQ (FREQUENTLY ASKED QUESTIONS)

NO FAQ LIST AT THIS TIME

